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Abstract. This paper approaches a solution of Winograd Schemas with a marker
passing algorithm which operates on an automatically generated semantic graph.
The semantic graph contains common sense facts from data sources form the
semantic web like domain ontologies e.g. from Linked Open Data (LOD), Word-
Net, Wikidata, and ConceptNet. Out of those facts, a semantic decomposition
algorithm selects relevant facts for the concepts used in the Winograd Schema
and adds them to the semantic graph. Markers are propagated through the graph
and used to identify an answer to the Winograd Schema. Depending on the en-
coded knowledge in the graph (connectionist view of world knowledge) and the
information encoded on the marker (for symbolic reasoning) our approach selects
the answers. With this selection, the marker passing approach is able to beat the
state-of-the-art approach by about 12%.

Keywords: Semantic Web · LOD · Winograd Schema · Common Sense Reason-
ing · Symbolic Connectionist AI

1 Introduction

Artificial Intelligence (AI) helps to solve ever more complex problems. The use of in-
creasingly sophisticated software enables us to automate many tedious tasks, perform
better research and grasp a better understanding of the world, e.g., playing Go [30], or
fighting cancer [9]. But “Despite all these developments, the promises of strong artifi-
cial intelligence set forth in the 1960s have not been fulfilled.” [31, p. 7], meaning that
AI is not able to understand natural language [33], construct plans on dynamic domains
[12], or do common sense reasoning like humans [27]. These second kinds of problems
are solved by a so-called “strong AI” [25]1. A strong AI is able to learn new problem-
solving skills in new domains. The adaption to new domains is one of the differences to
special purpose AI where a chess AI is, e.g., unable to drive a car.
One of the reasons for human intelligence might be the ability to think. Having a lan-
guage to formulate thoughts, meaning and ideas, helps us to handle unknown situations
with adaptiveness and dynamic behavior. Part of the capacity to think is reasoning,
which does not always “obey the rules of classical logic” but gives us our common

1 Strong AI (sometimes called full AI or hard AI ) [14, p. 260] refers to a human level intelli-
gence.
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sense [11]. The foundation for a language to think is a representation of meaning. Con-
sequently, research in AI analyzes how methods from mathematics, linguistics, psychol-
ogy, philosophy and computer science can be used to create machines with the ability
to represent meaning.
A main source of world knowledge is the semantic web consisting of multiple on-
tologies which are created and maintained by multiple organizations [32]. Collecting
knowledge from the semantic web and merging it into one representation can be seen
as a first step to reasoning on with the LOD which includes Information sources like
DBPedia [2] or Freebase or YAGO [1].
The use of world knowledge in common sense reasoning has multiple applications [15].
One application is to answer commonsense reasoning questions like the test questions
called Winograd Schemas. The Commonsense Reasoning - Winograd Schema Chal-
lenge (WSC)2 tests the best approaches solving Winograd Schemas.
This paper describes our approach to solving Winograd Schemas: Using knowledge
extracted form the Semantic Web to create an connections representation of facts. This
connectionist representation is then used for pragmatic inference. For the evaluation,
we will use the Common-sense Reasoning Winograd Challenge dataset.
In the following we will use the example Winograd Schema, as an running example:
”The trophy would not fit in the brown suitcase because it was too big (small).
What was too big (small)?” Answer 0: the trophy Answer 1: the suitcase
In this example the answer changes depending of the used adjective: big (the trophy) or
small (the suitcase).

2 State-of-the-art

The Winograd Schema Challenge was first proposed in the year 2011 by Hector Levesque
[16] as a test for machine intelligence as an alternative to the Turing Test. On the first
glance, the Winograd Schema Challenge seems like a task in anaphora resolution. How-
ever, rather than to be solvable with only grammatical and semantic relations, it requires
world knowledge and common sense reasoning. This section will look at the newest AI
approaches to solve Winograd Schemas and describe the available data sets.
Related Work
After the initial Winograd Schema Challenge described by Levesque [16], multiple
approaches to solving Winograd Schemas where published. The result of our analysis
of related work is shown in Fig. 1. One of the first approaches by Rahman and Ng [23]
combines eight different methods, e.g., using the Google search engine and comparing
the number of results.
Starting in 2015 a new era of approaches were introduced by Sharma et al. [26]. They
developed an approach which combines existing methods for knowledge collection and
extends them with a semantic parser. Also in 2015 Sharma et al. [22] used statistical
methods with the focus on sentence predicates. Since the statistical analysis of Wino-
grad Schema evades the challenge of common sense reasoning a change in the compe-
tition dataset was needed.

2 http://commonsensereasoning.org/winograd.html last visited on 30.07.2018
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Fig. 1. Classification of state-of-the-art in time.

After the rules for the construction of Winograd Schemas have been changed with the
suggestions of Levesque et al. [16], approaches building solely on statistical analysis
are no longer capable of mastering the challenge. After this change, the first official
Common Sense Reasoning Winograd Schema Challenge organized by the New York
University was conducted. With the improved data set, the results of the known ap-
proaches dropped to the extent that the best result in 2016 was as low as 58%, with a
random score of 48% [6]. One of the most promising approaches in 2016 was Liu et al.
which reached in 2017 Liu et al. [17] a result of 61.7%. No other results are reported
by [8] or [24].
Data Set
In this section, we will describe the data set on which we evaluate our approach. There
has been a multitude of Winograd data sets over the last few years. Rahman and Ng [23]
present a manually created data set of 941 sentences. This data set had the caveat of
being solvable without common sense reasoning.
The most recent Winograd Schema dataset is based on the work of Morgenstern et
al. [19]. It contains 60 Winograd Schemas and is more difficult than the others because
the example schemas have been selected with the criteria to not be solvable by statistics.
This focus on difficult schemas has been done to ensure that the approaches explicitly do
not use a black box or statistical models to approximate answers. This dataset has been
used at the IJCAI 2016 in the last official Winograd Schema Challenge and therefore
will be used in this work.

3 Approaching Winograd Schemas with Decomposition and
marker passing

The best approach on Winograd Schemas so far is to train an Artificial Neural Network
(ANN) as shown by Liu et al. [17]. We approach Winograd Schemas with a similar
approach in two parts: First, automatically creating a semantic graph for each schema,
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and second, using marker passing to select the right pronoun resolution. This approach
is similar to ANNs because a network is used to encode semantic features and the
markers describe activation. Each node is activated like in an ANN and passes markers
to the concepts it is in relation with. The markers encode symbolic information like the
activation of a node in the graph, and therefore simulate neural behavior but with more
detail then in an ANN like in [17]. This section describes how the semantic graph is
built and how the marker passing is configured in our approach.

3.1 Decomposing

The first phase collects all information available and creates a semantic graph, which
forms the knowledge base for this approach. This collection of connectionist informa-
tion is called Decomposition. A Decomposition is a process of looking up a concept in
the given information sources. As shown in Figure 2 the input of the decomposition is a
set of information sources like WordNet, Wikipedia or domain ontologies, which then
are used to build semantic graphs3 .
The lookup of a concept is done by collecting all semantic relations known to the con-
cepts. These relations could be, e.g., synonyms, hypernyms or meronyms. The semantic
relations are completed with the concepts making up the definition of a concept, e.g.,
as described in WordNet. If an added concept was not present in the graph before the
concepts will be decomposed iteratively until a termination criterion is met. The termi-
nation criteria were selected to be the iteration depth of two since the graph becomes
intractable afterward.
This resulting semantic graph is domain specific and depends on the concepts which
are decomposed. The decomposition is the process of looking up a given word in the
given resources and adding all found concepts and relations to the resulting graph.

Inform
ation

Knowledge representation

Semantic Decomposition 
WordNet, Wikidata,… 

Domain dependent
Gather definitions of the concept
Collect semantic relations between 
concepts

Semantic Decomposition 
WordNet, Wikidata,… 

Create a semantic graph of 
concepts and relationsSemantic Decomposition 

WordNet, Wikidata,… 

WordNet
Wiktionary
Domain Ontologies
Wikidata
ConceptNet
FrameNet
BabelNet Define a formal semantic graph

Semantic Decomposition 
WordNet, Wikidata,… 

Normalize Information 

Decide on termination condition
Semantic Decomposition 
WordNet, Wikidata,… 

Corpus linguistic

Fig. 2. Abstract description of the semantic decomposition to automatically create a semantic
graph.

Depending on the decomposed concepts, the resulting graph consists of different con-
cepts. This has been proven to be useful for different problems, e.g., semantic distance

3 git@gitlab.tubit.tu-berlin.de:johannes_faehndrich/
semantic-decomposition.git for access please contact the author.
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measures [10]. The questions for the decomposition is now on which concepts to de-
compose regarding Winograd Schemas. The next subsection will explain how we cre-
ated the knowledge graph which is used by the marker passing.

Decomposing Winograd Schemas At first, each word of the Winograd Schema (WGS)
is decomposed, and the resulting graphs are merged. This graph forms the basis of se-
mantic information, the facts we know about the words used in the WGS. This first
decomposition thus contains all semantic information available to our approach, includ-
ing synonyms, antonyms, meronyms, hypo- and hypernyms of each word. Depending
on the information sources connected to the decomposition, additional concepts and
relations can be part of this graph.
The result of decomposing of the word ”suitcase” in our example is shown in Figure 3:

FrameNetform of

Suitcase

luggage
Hypernym

Wikipedia

rectangularshaped
subclass of

Wiktionary

Mala, Sweden

different from

Medical suitcases

Sibcategories

description

traveling bag

WordNet

Hypernym

a p
ortab

le rectangular container for carrying clothes

Definition

grip

Meronym

bag

Hypernym

Containers

Frame

Contents
has

Fig. 3. Example decomposition of the word suitcase.

In Figure 3 the colors denote the source of information. The node of the graph represent
concepts, and the edges the relations between them. The decomposition contains not
only semantic but also syntactic information.
Now it is time to add other information which is already contained in the WGS. The
next sections will describe how syntactic, semantic roles and Named Entity Recognition
(NER) information is added. We start out with syntactic information.

Syntax The syntactic information contains the information which constructs sentences
out of words. Without syntax the word order would not matter, inflection is ignored, and
references cannot be followed. Adding syntactic information is done by using a state
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of the art NLP library called CoreNLP4. CoreNLP [18] has been chosen because of its
performance on English texts regarding grammatical analysis like Part-of-Speech (POS)
and Named Entity Recognition (NER) tagging as well as basic dependency identifica-
tion. Figure 4 shows one example output of the CoreNLP framework for a dependency
analysis of our example sentence. Here the colors describe the different POS, and the
arrows describe the syntactic relations between the words. These nodes and edges are
added to our decomposition graph, which includes syntactic information into the purely
semantic result of the decomposition.

Fig. 4. CoreNLP output of a dependency tree for our example phrase.

The syntactic analysis creates an abstract syntax tree with additional nodes and relations
to all words of the WGS. Those nodes and relations are added to the decomposition
graph and with that allow the marker to pass over them. Enabling our approach to take
syntactic relations into the count.

Semantic Roles Semantic role labeling analyses verbs and annotates roles involved.
In our example the verb “to fit” has two roles: The object which is fitting and the thing
it is fits into. We use PropBank5 to determine semantic roles. We integrate those as
edges into the decomposition graph. Especially for the resolution of Winograd Schemas,
those roles are essential because Winograd Schemas are those border cases where the
assignment of roles is ambiguous. If the program assigning semantic roles can guess
right here, the battle is mostly won: In many cases, this would create a direct connection
between the ambiguous pronoun and one of the answer candidates.

NER If semantic decomposition is applied to names, information enters the semantic
graph that is not helpful for the resolution of the Winograd Schema (e.g., etymological
information about the names of people mentioned in the sentence). This makes it neces-
sary to recognize names entities and exclude them from the decomposition. Rather than
the named entity itself the assigned named entity tag is decomposed, e.g., “Person”.
This leads to more semantically useful links in the graph, adding qualities of people or
organizations linked to the names, which can, in turn, lead to meaningful connections
to other parts of the graph.
The resulting graph decomposes all words which are not stop words and connects them
to the given answers. A simplification of this graph is shown in Figure 5.

4 https://stanfordnlp.github.io/CoreNLP/ last visited 12.08.2018
5 https://propbank.github.io/ last visited 12.08.2018
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Figure 5 simplifies the decomposition for the ease of understanding. This graph is ex-
tended with syntactic edges discussed in the next section.
If no information source of the decomposition contains information about a given con-
cept, the graph only contains the concept it self. If a concept has additionally no syn-
tactic relations to the rest of the graph, the concept is not connected to the graph.

3.2 Marker Passing

Marker passing is the generalization of spreading activation [5] which models how se-
mantic memory [4, 28] is used for reasoning in humans. One theory about reasoning in
humans claims that humans think in concepts in a connectionist way [13]. Concepts are
abstract representations of things, meaning less detailed, a model of which properties
we remember if we think of something. This something could be e.g. a dog, or love, but
in all cases it contains connections to other concepts, like legs or feelings. But a concept
is abstract because it is a model of the real dog. It contains relevant information, not
every hair of the dog, not every moment of feeling we had, but only those relevant. The
connectionist part, is that the concept is connected to other concepts, with relations. A
relation could be e.g. has as in a dog has four legs, or e.g. is-a as love is a choice or
feeling. Those connections are part of the meaning of the concepts. Thus if we connect
a dog with hurt or fear the meaning of dog is different then if we connect it with pro-
tection or puppies. Therefore, the meaning of concepts is subjective. But meaning is
not only subjective but also context dependent [20, 21]. Context dependent means that
regarding the current situation, the meaning of concepts changes. Good examples are
ambiguous words like bank, where we get money or where we sit on our surfboard. The
concepts and how they are connected, is given by the decomposition. Thus the semantic
graph shows what was learned. The questions answered by the marker passing is: how
can this graph be used to implement symbolic reasoning [3, 29]?
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This principle is transferred to machine learning algorithms which then can be used on
artificial semantic graphs for reasoning. The basic idea is that markers are placed on

Reasoning

Q
uestion

Marker Passing

Symbolic Connectionist

Problem specific

Semantic Distance
Sentence Similarty
Word Sense Disambiguation
Service Matching
Semantic Heuristic

Define Marker Passing Algorithm

Interpret Markers for Problem

Specify Parameters of Algorithm 
for a given Problem

Formalize Symbolic Information on 
Markers
Use Semantic Graph for reasoning

Fig. 6. Reasoning on semantic graphs.

concepts of interest in a semantic graph, and are passed over the edges connecting the
concepts to other concepts. This creates a marker distribution over the graph. Such an al-
gorithm is quite general and can be adapted to many applications. In this work we adapt
it to the solution of WGSs. The markers include application-specific information like
an activation level or an edge history over which the marker traveled so far. Additional
application-specific properties of the algorithm are encoded in the configuration of the
marker passing. Those properties could be the placement of the initial markers, or when
an concept is being regarded as active. This application specificness is shown in Fig. 6:
the marker passing is specialized by a questions we want to answer. For the Winograd
Schemas, this question is: What is the right resolution of the ambiguous pronoun? After
configuring the marker passing, the marker passing algorithm then passes markers from
their start location to connected nodes, regarding those application specific rules.
Figure 7 shows the abstract marker passing algorithm. The main loop (called a Pulse) is
executed until a termination condition is met. Each Pulse consists of selecting the active
nodes, which pass their markers, the passing of the markers to neighboring nodes and
the integration of the nodes into those neighbors.
The generic marker passing algorithm has variation points which allow specializa-
tion for different areas of application. These parameters are dependent on each other.
Simple examples of such variation points are the selectActiveConcepts function, the
terminationCondition and the markers: Here the selectActiveConcepts function
needs to interpret the markers to decide if a concept is active or not. These exam-
ples show that the variation points can inter-depend. The needed variation points of the
marker passing are the following:

Active Concept: is a concept which has markers on it.
Passing Concept: is a concept which has been selected by the activation function to

pass markers in the next pulse.
Data: describes the marker and with that the information available to the marked node.
Pulse size: selecting which nodes pass markers.
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In-Function: describes how the node handles incoming markers.
Out-Function and After-Send: describe how the nodes pass markers and what hap-

pens on the node after passing them.
Edge-Function: describes how the edges handle markers passed over them.
Termination Condition: describes when to stop the passing of markers.
Pre- and Post-Adjustment: describes what happens before and after a pulse.

In this way, the relevant concepts can receive markers, and after the algorithm has fin-
ished passing markers, the result can be interpreted. Algorithm 1 shows a more detailed
view of the main Pulse loop, and describes our extension of the spreading activation
algorithm of Crestani [5]. Active concepts are defined by getActiveConcepts().
In the abstract representation of the marker passing algorithm in Figure 7 the inputs are
parts of the specification of the marker passing algorithm. In the more concrete pseudo
code, in Algorithm 1 the input is a data type called “NodeData” which describes a
graph created by the semantic decomposition with markers on the nodes. As input this
markers are the start markers, and as output this is the resulting graph with its marker
distribution. Now lets look at what the algorithm does step by step:

Line 2 - 4: All passing concepts activate their out-function and the result to the current
pulse stored in the variable pulseout. This is the input for the edge functions of the
appropriate relations of the next step.

Line 5 - 9: Each marker passed by the current pulse is given to the appropriate relation
it is passed to, and this relation activates its edge-function. The result of the edge-
function is added to the pulse which is used as input for the in-functions of the
targets of this relations.
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Algorithm 1 Marker Passing Algorithm
Name: MarkerPassing Input: NodeData M Output:NodeData
1: pulseout = new Map<Concept,(Edge,Markers)∗ >();
2: for all sourceConcept ∈ getPassingConcepts(M ) do
3: pulseout.addAll(outFuntion(M , sourceConcept));
4: end for
5: pulsein = new Map<Concept,(Edge,Markers)∗ >();
6: for all e ∈ pulseout.keyset() do
7: pulsein.addAll(edgeFunction(M ,e,pulseout.get(e)));
8: end for
9: for all targetConcept ∈ pulsein.keyset() do

10: M = inFunction(M , targetConcept, pulsein.get(targetConcept));
11: end for
12: for all sourceConcept ∈ getPassingConcepts(M) do
13: M = afterSend(M , sourceConcept);
14: end for
15: return M

Line 10 - 12: The concepts which are targets of the relations passing markers are given
the markers passed to them and activate their in-function.

Line 13 - 15: The after-send-function is activated to fix the markers on the source con-
cepts if needed.

In our running example we can see in Figure 8 Step 1 that the initial markers have
been placed at the pronoun. With each pulse the markers pass over the edges to other
concepts, until they reach e.g. the position of step n in Figure 8.
The Step n could be one outcome of the marker passing which then needs interpretation.
How the markers are interpreted is subject of the next section.
This algorithm is used to perform inference on the graphs created by the Winograd
Schema. The specialization of the algorithm passes markers over all edges, weighted
by edge specific weights. The parameters are chosen like in the experiment regarding
a semantic similarity measure [10]. These parameters let the markers pass through the
graph and propagate like measuring a semantic similarity. This lets the markers pass
through, e.g., big, fit and trophy, to select an answer. The parameters specialized for
this experiment with Winograd Schemas are shown in Table 1.
The parameters in Table 1 have been established in experiments where each parameter
has been analyzed, and an selection has been made depending on the expressibility
of the edges. The other link weights propagate markers as a factor on the activation
described on the marker. With the additional links (Semantic roles, NER, Syntax,...)
new weights had to be introduced. The selection of those new link weights is not an
optimization on the test set, but an general setup of the approach. The same has been
done for semantic distance in [10], where the weights of a general semantic distance
measure are reused in our approach here. Those weights for the newly involved edges
are not specific to the WSC but, e.g., can also be used for sentence similarity or Word
Sense Disambiguation or the relaxation of search queries on knowledge bases [7]. The
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Fig. 8. Marker passing Example.

degradation factor of negative activation reduces the effect of negative activation in
general.

Marker Passing Result Interpretation After the marker passing has terminated mov-
ing markers on the semantic graph, it is time to interpret the result. The interpretation of
the marker distribution on the semantic graph depends on the problem solved. For our
example application of the Winograd Schemas, we count the amount of markers set on
each answer. We then select the answer with the most total amount of activation on all
markers. This maximal activation represents a mix of semantic and syntactic distances.
The distance is measured, because each time a concept is activated, its markers are split
up between multiple edges. Passing the markers to multiple edges, means that ever less
activation is carried on markers with each puls. This reduction of activation results in
an abstract distance measure.

Here multiple interpretations have been tested: maximal average activation, maximal
peak activation, the maximal sum of activation over the history of a concepts activation.
The best performing interpretation was to use the marker activation divided through the
total activation on all answers.
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Table 1. Parameters of the marker passing algorithms which differ from [10].

Parameter Value
degradation factor (negative) 0.05
syntaxLinkWeight 0.5
contrastLinkWeight -0.5
NERLinkWeight 0.3
roleLinkWeight -0.94
vnRoleLinkWeight 0.3
vnRoleLinkWeight 0.3

4 Evaluation

We evaluated our approach on the Winograd Schema Challenge 6. For this evaluation,
we have used parameters of the marker passing which have been learned for semantic
similarity [10]. Those parameters are not specialized to the data set. Other parameters
have been specialized, e.g., the decomposition depth, or the start marker allocation.
Smaller experiments have shown that the placement of markers on the pronoun instead
on the answer possibilities performs better in solving the WSC. The results of our ex-
periments compared to the state-of-the-art are shown in Table 2 [17].

Table 2. Approaches and their performance in 2016 Winograd Schema Challenge [17, Table 4],
and the result of Liu et al. [17].

Approach Result
Our Approach 74%
Liu et al. [17] 62%
Quan Liu 58%
Nikos Isaak 48%
Patrick Dhondt 45%
Denis Robert 32%

These results show that the inference on the semantic and syntactic graph can distin-
guish the ambiguous pronouns. Furthermore, the interpretation of the markers lets us
evaluate the ratio of the amount of activation placed on each answer possibility, which
gives us insight into the confidence of our approach.
The evaluation has been done in multiple smaller experiments. The different compo-
nents have been evaluated to their impact to the result. As an example the placement
of the start markers. The start marker placement could be on the pronoun or an the
answers. Putting the start markers on the answers, which have multiple edges in the
graph, spreads the markers across the graph. This spread is caused by multiple use of
the answers e.g. names and the on average high edge count of the answer nodes. This

6 https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/
WSCollection.xml last visited 12.08.2018
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spread of markers can be reduced by placing the markers on the ambiguous pronoun,
which in average has less edges then an answer node. Because the markers did not have
to find the e.g. one edge connecting the pronoun to the sentence, the graph was not
flooded with markers, resulting an better performance then placing start markers on the
answers.
Another example of an additional experiment is the investigation of the influence of the
different information sources. Regarding the Winograd Schema challenge using only
WordNet, Wiktionary and Wikidata worked best.
The use of syntactic relations, in addition to the semantic relations of the decomposition
connects many concepts (especially the pronoun) to the rest of the sentence. These
additional relations increase the performance of the approach significantly.

5 Conclusion

The paper presents our unsupervised approach to solving Winograd Schemas. Our ap-
proach includes two parts: Part one is connectionist, where resources like Wikipedia
or WordNet are used to collect semantic information about the words used and build
up a semantic graph. The second part is a symbolic one, where marker passing is used
to traverse the created semantic and syntactic graph. The combination of symbolic and
connectionist approaches allows the approach to be adapted to multiple problems. The
experiments in this paper show that it is possible to use this approach to beat the state-
of-the-art in the Winograd Schema Challenge. Some of the wrongly answered schemas
have properties in common. One example is the following schemas:

– Mark heard Steve’s feet going down the ladder. The door of the shop closed after-
him. He ran to look out the window.

– So Mark slept. It was daylight when he woke with Warren’s hand uponhisshoulder.
– Papa looked down at the children’s faces, so puzzled and sad now. It was bad

enough that they had to be denied so many things because he couldn’t affordthem.

All of those schemas have a “’s” in one of the answers. The apostrophe seems to confuse
the syntactic analysis and the decomposition independent of the being singular or plural.
On a positive note, our approach is able to handle multiple sentences, handle multi word
answers like “life and soul” like in:

– Lionel is holding captive a scientist, Dr. Vardi, who has invented a device that turns
animals invisible; Lionel plans to use it on Geoffrey and send him to steal nuclear
material from an army vault.

– I sat there feeling rather like a chappie I’d once read about in a book, who murdered
another cove and hid the body under the dining-room table, and then had to be the
life and soul of a dinner party, withitthere all the time.

Additionally our approach still performs well if more than two answer possibilities are
part of the schema. Here 67% of the schemas with three or more answers have been
solved successfully.
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5.1 Future Work

The here presented approach combines prior knowledge in the form of a knowledge
source like the LOD, Wikipedia or WordNet with a reasoning algorithm extending mod-
ern ANN. Since the marker passing can be configured to use weights in relations, which
changes the marker distribution on the graph, the weights can be learned. This learn-
ing of weights would specialize the resulting algorithm to the given problem, and most
likely reduce its generality. With this loss in generality, the results would be as specific
as the results produced by black box ANN approaches.
Another drawback of our approach is the dependence of the marker passing on the de-
composition. Thus if the performance of the approach is not as expected, it might at first
be unclear if a faulty decomposition or a misconfigured marker massing is the cause.
Solving such development problems needs experience on which data sources contain
which kind of information so that the decomposition can be changed to fit the needs of
the problem. Additionally, the developer needs a sufficient understanding of the marker
massing, and the effect of a change in parameters have on the result. During the design
of the algorithm, the needed information in the decomposition can be estimated, and
with that information, the needed data sources can be specified. Based on the available
information in the semantic graph the marker passing can be specified.
It can be argued that the use of knowledge sources which are open to public debate
include unverified information. This unverified information can lead the algorithm to
be biased towards beliefs of the authors of such knowledge sources. Furthermore is the
amount of knowledge sources in which a piece of information has been stated of interest
to the decomposition since we do not yet identify and remove duplicate information.
Additionally, we do not use the full extent of the knowledge available, since the multi-
lingual information, presented, e.g., in Wikidata is neglected. The extension to use
multi-lingual information of all Wikipedia, BabelNet, and Wikidata is part of future
work.
Acknowledgement: ”This work is a part of the NeMo project. NeMo has received
funding from the European Union’s Horizon 2020 research & innovation programme
under grant agreement no 713794. Content reflects only the authors’ view and European
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